香港正版四不象图
您当前的位置:主页 > 香港正版四不象图 >

波士顿咨询:2018量子计算报告

发布日期:2019-10-15 04:09   来源:未知   阅读:

  波士顿咨询《2018量子计算报告》显示,量子计算机即根据量子物理学来构建的计算机,能够完成当前的经典计算机无法解决的信息处理和存储任务。当然,不是所有人都需要这种计算能力,量子计算主要针对数据密集型应用,比如搜索、加密、机器学习等,以及制药、化学、能源等领域的建模。未来,由量子计算机和经典计算机组组成的混合系统将轻松解决当下看来相当棘手的问题。

  目前,量子计算的发展进程相当于早期的二进制计算机,即机械计算机、真空管和半导体之争的阶段。BCG认为,量子计算将在接下来的25年间经历三代发展,走向技术成熟。其中,初代量子计算将被企业用于解决特定的实际业务和研发需求。BCG预计,到2030年,量子计算的应用市场规模可达500多亿美元,当然,这得基于逻辑量子比特的制造和集成能力达到基础量子计算所需的最低要求。

  这并不容易,仅量子模拟为例,就需要约150个可纠错、高保真的逻辑量子比特。所谓的单个逻辑量子比特,往往对应着数十甚至上千的物理单元(物理量子比特)。此外,多量子比特系统的有效测量方案也有待研究。现在,量子计算的主要玩家有IBM(最近公布了自家研发的20比特量子处理器和49比特模拟器)、谷歌(发布了72比特处理器Bristlecone),以及英特尔、微软、麻省理工、耶鲁、牛津等。

  经典计算机是按顺序运行的,这对于大型、复杂的问题就很困难,比如大数因数分解(破解最常见的密码体系)。相比之下,量子计算机相当于提供了一个天然的并行运算,能够同时试验多个可能的解,比已知最快经典算法有“指数型(超多项式)”加速。(为应对量子计算破密,中国已经发射量子通讯卫星进行防御。)

  这种运行加速的优势可以还用于只要和化学研发。目前,对于分子间相互作用的模拟计算复杂程度随着分子数目的增加呈指数性增长,就跟求大数因数分解似的。根据费曼(Richard Feynman)的观点,量子处理器可以一次性考虑所有的可能交互,并求解最低能量状态,即对应实际的分子交互模式。基于此,BCG预测2030年的,在制药行业,量子计算市场规模将达200亿美元,化学、材料科学等科技密集型产业的规模将达70亿美元。

  面向非结构化的搜索任务,包括一些机器学习的应用,运算时间也会随着问题规模指数性增长。此时,量子算法,如Grover搜索的优势就体现出来了。Grover搜索利用量子态的纠缠特性和量子并行计算原理,运算时间仅随着问题规模线性增长。

  今天,大规模的搜索和机器学习问题是通过大量的、并行的、专门的GPU来解决的。参考GPU霸主英伟达的业绩,BCG预测,到2030年,此类取代基于GPU的算法应用规模将超200亿美元。此类基于量子计算平台的搜索优化应用,很可能就是驱动谷歌、IBM投入研发的主因。

  当前的经典量子计算在解决路由运输和物流优化等复杂操作或网络的问题是,已经显现了良好的性能,尽管量子计算方法可能解除现有运算的极限,但据调研,企业基于现有算法的可用性,并不认为有必要关注其潜能。因此,未来量子计算能否在此类问题中开启新的价值,尚不明确。

  基于量子计算的“等效摩尔定律”(物理量子比特集成数目约每两年翻一番),预计量子计算机将经历三代发展:

  1、2018到2028年,工程师们将研发出可用于低复杂程度的量子模拟问题的非通用量子计算机。

  2、2028到2039年,逻辑量子比特数量将扩展到50多个,并实现所谓的“量子霸权”,更快速的执行特定算法的应用程序,主要包括分子模拟、研发和软件开发等,创造巨大的市场潜力。量子信息处理将进一步发展,企业对量子模拟方法变得更为熟悉。

  3、内部四肖四码,2031到2042年,量子计算机将在模拟、搜索和运算中执行高级功能,实现各类商业应用,对比经典计算机具有明显的优势。预计二代、三代量子计算机发展的交界处,就是量子计算超越经典计算(在特定应用中)的临界点。预计2030年之后,量子计算的发展将显著加速。

Power by DedeCms